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Abstract
We examine numerically the distribution function fK(r) of the distance r
between opposite polygonal nodes for random polygons of N nodes with a
fixed knot type K. Here we consider three knots such as ∅, 31 and 31�31. In
a wide range of r, the shape of fK(r) is well fitted by the scaling form [1]
of self-avoiding walks. The fit yields the Gaussian exponents νK = 1

2 and
γK = 1. Furthermore, if we re-scale the intersegment distance r by the average
size RK of random polygons of knot K, the distribution function of the variable
r/RK should become the same Gaussian distribution for any large value of N
and any knot K. We also introduce a fitting formula to the distribution gK(R)

of gyration radius R for random polygons under some topological constraint K.

PACS numbers: 05.40.Fb, 61.25.Hg, 82.20.Wt, 02.40.Pc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Polymer chains in solutions or gels may be highly self-entangled: such entanglements should
be important to understand some features of polymeric materials. A variety of knots can appear
by connecting the two ends of a polymer chain. In fact, various knotted DNAs are synthesized
in experiments through random closure of nicked DNA chains [2, 3]. Since topological
questions were addressed by Delbrück [4], Frisch and Wasserman [5], several aspects of
knotted ring polymers, such as the probability of random knotting [6–15], the average sizes
[16, 17] and the complexity of their conformations [18] have been studied numerically and
analytically.
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Let us discuss the average size of knotted ring polymers with no excluded volume, i.e.,
the mean-squared gyration radius R2

K(N) of N-noded random polygons with fixed knot type
K [19–25]. We consider random polygons as a simple model of ring polymers in solution
at the θ -point [26]. At the θ -point polymers should have no effect of excluded volume.
Furthermore, ring polymers keep their topology unchanged. It has now been established in
simulations [20, 22–24] that the average size of random polygons with a fixed knot is larger
than that with no topological constraint, when N is large. The topological swelling of random
polygons may be explained in terms of entropic repulsion caused by the topological constraint.
The phenomenon should be closely related to the ‘topological excluded volume’ proposed for
such random polygons that possess the trivial knot ∅ [19]. Concerning the large-N behaviour
of R2

K(N), however, the numerical studies do not unanimously arrive at the same conclusion.
We have analysed the data of R2

K(N) for a model of random polygons [23], assuming the
scaling formula of the following form:

R2
K(N) = AKN2νK (1 + BKN−�K + · · ·). (1)

The result favours the interpretation νK = νSAW. However, limiting the analysis to a narrower
range of N, the alternative interpretation νK = νRW is also possible. Here, self-avoiding walks
(SAW) and random walks (RW) have the scaling exponent νSAW = 0.588 and νRW = 0.5,
respectively. Thus, in order to clarify the large-N behaviour of random polygons with fixed
knots, it would be interesting to investigate some other quantity associated with the asymptotic
behaviour.

In this paper, we study the following two quantities of random polygons with a fixed knot:
(i) the distribution function of the distance between opposite nodes and (ii) the distribution of
the radius of gyration. If the ‘topological excluded volume’ corresponds to a certain amount
of excluded volume, then the distance between opposite nodes should follow a non-Gaussian
distribution. For ring polymers with excluded volume, the distribution of the distance between
opposite nodes should be non-Gaussian, while it is Gaussian for random polygons. Here
we assume that the distance between opposite polygonal nodes plays the similar role as the
end-to-end distance of a linear chain. For the self-avoiding walk, the end-to-end distance
distribution is non-Gaussian [27, 28].

Through computer simulation of random polygons with fixed knots, we have evaluated
the distributions of the distance r between opposite nodes of random polygons under the
topological constraints [29]. We are concerned with the trivial knot, the trefoil knot and
the composite knot consisting of two trefoil knots, which are denoted by ∅, 31 and 31�31,
respectively. We show that the scaling form of the self-avoiding walk gives good fitting curves
to the data of the distributions in a wide range. It should be remarkable, since the scaling
form of the end-to-end distance distribution is derived when ρ = r/Nν is finite and very large
[1, 27, 28, 30–34]. Furthermore, we show that the distribution function of the normalized
distance r/RK should be given by the same Gaussian form for any N and K. Here we recall that
RK denotes the average size of random polygons of knot K. Thus, it is suggested that the effect
of the ‘topological excluded volume’ should be different from the standard excluded-volume
effect.

We have also evaluated the distribution of the gyration radius for random polygons under
some topological constraints [29]. We introduce a formula for describing the distribution, and
discuss its fitting curves. The formula of the gyration-radius distribution is new, in particular,
for random polygons under topological constraints. We note that for the Gaussian random
walk, several approximate formulae of the gyration-radius distribution are known [35, 36].

The paper consists of the following. In section 2, we explain the model of random
polygons, and define some symbols for the distribution functions. In section 3, we describe
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briefly some procedures of the computer simulation. In section 4, we discuss the numerical
results of this research. We plot the distribution function of the intersegment distance for
random polygons under topological constraints. Through fitting curves to the data, we discuss
that the distribution of the intersegment distance should be well approximated by the Gaussian
distribution. We also plot the distribution of the gyration radius for random polygons under
topological constraints. We thus investigate topological effects on the average sizes of random
polygons. In section 5, we discuss that the ‘topological excluded volume’ should be different
from the standard excluded volume, and present an open question.

2. Model and distribution functions

We consider a model of random polygons in which a polygon PN consists of N line segments
of length a. It is specified by position vectors of its nodes, PN = (r1, r2, . . . , rN). All cyclic
permutations of the set of position vectors correspond to the same polygon. We recall that
random polygons have no excluded volume. Hereafter we set a = 1.

When a polygon is topologically equivalent to a knot K, we call it a polygon of knot type
K. The configuration space C of polygons is divided into subspaces CK in which all polygons
have the same knot K. We have C = ∑

K CK .
For a polygon PN , we denote the intersegment vector from the ith node to the (i + λN)th

node

r(i; λ,PN) = ri+λN − ri , (2)

where the progress parameter λ takes a value between 0 and 1. Here we assume the convention:
rN+i = ri .

We define the distribution of the distance between the ith and the (i + λN)th nodes by the
probability f (r; λ,N)�r that the length of the intersegment vector r(i; λ,PN) takes a value
between r and r + �r:

f (r; λ,N)�r = 1

NM

M∑
m=1

N∑
i=1

∫ r+�r

r

dr δ(r − |r(i; λ,PN,m)|). (3)

Here �r is a small positive real number. We choose it so that the statistical fluctuation of
f (r; λ,N) becomes moderately small. The distribution of the distance between two nodes
for random polygons with a fixed knot type K is similarly defined by

fK(r; λ,N)�r = 1

NMK

M∑
m=1

N∑
i=1

∫ r+�r

r

dr δ(r − |r(i; λ,PN,m)|)χ(PN,m,K). (4)

Here the indicator function χ(P,K) filters the polygons of knot type K; it takes the value 1 if
P ∈ CK and 0 otherwise.

We calculate the distribution f (r; λ,N) of the intersegment distance r by randomly
generating a large number of polygons PN,m with length N for m = 1, . . . , M . Here the
subscript m denotes the mth polygon generated. The number of generated polygons of the
knot type K is given by MK = ∑

m χ(PN,m,K), and we have M = ∑
K MK .

Let us denote the square of the gyration radius of a polygon PN by

R2
G(PN) = 1

2N2

N∑
i,j=1

(ri − rj )
2. (5)

We define the distribution g(R;N) for gyration radius R by

g(R;N)�R = 1

M

M∑
m=1

∫ R+�R

R

dR δ
(
R −

√
R2

G(PN,m)
)
, (6)
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and the one for polygons with knot type K by

gK(R;N)�R = 1

MK

M∑
m=1

∫ R+�R

R

dR δ
(
R −

√
R2

G(PN,m)
)
χ(PN,m,K). (7)

3. Simulation procedure

A pivot move for a polygon is a rotation of a chain of segments, randomly chosen from the
polygon, around the axis passing the two endmost nodes of the chain by a random amount of
angle φ [23, 37]. The rotation angle φ is selected randomly from the interval between 0◦ and
360◦. We do not check self-intersections during the process of rotation of the chain since such
configurations are negligible in the space C.

We start from a seed conformation placed on the cubic lattice, which is regarded as a
special conformation of the off-lattice polygon in the continuum space [38]. We then generate
a sequence of polygons by applying the pivot moves repeatedly. After discarding the initial
2000 transient conformations, we take samples of polygons at every 200 pivot moves.

To determine the topology of polygons, we employ two simple knot invariants. We
calculate the special value of the Alexander polynomial �K(t) at t = −1 [6] (which is
also called the determinant of a knot), and the Vassiliev invariant of the second-order v2(K)

[39, 40]. With these invariants, the chance of misidentification of topology class for a given
polygon should be negligible and much smaller than the statistical errors of the data, as far as
the simple knots are concerned.

The simulation has been performed for polygons with the length N = 300 and 600. We
have generated M = 3 × 106 random polygons for each given length N. We have classified
those polygons into four groups according to their knot types, the three groups of polygons
with the specific knot types ∅, 31 and 31�31, and the other group of knot types other than
the previous three. The three knots have distinct sets of values for the two knot invariants
|�K(t = −1)| and v2(K).

The distribution function fK(r; λ,N) of the intersegment distance r has been evaluated
at the progress parameter λ = 1/4, 1/2 and 3/4 for random polygons under some topological
constraint K [29]. However, we focus on the case of λ = 1/2. The range of intersegment
distance r is divided into a number of bins of width �r . Here we set �r = 0.25. We enumerate
the number of intersegment distances in each of the bins. The distribution function is obtained
by dividing the number of each bin by the total number of intersegment distances. Similarly,
we numerically evaluate the distribution gK(R;N) of gyration radius R for random polygons
under some topological constraint K. Here we take �R = 0.25.

4. Results of the simulation

4.1. Functional forms of the distributions

The asymptotic scaling form of the end-to-end distance distribution of the self-avoiding walks
is derived for the region ρ = r/Nν � 1 [1, 30, 31]. We now apply it to the data of the
distribution function for the distance between opposites nodes for random polygons under
topological constraint K. We thus have the following:

fK(r; λ,N) = AKr2+θK exp[−DKrδK ], (8)

θK = dνK + 1 − γK − d/2

1 − νK

, (9)
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Figure 1. Distribution fK(r; λ, N) of intersegment distance r at λ = 1/2 for N = 300. Dots (·),
crosses (×), asterisks (∗), open squares (�) and full squares ( ) denote the plots of conditions,
all,∅, 31, 31�31 and others, respectively. The plots and fitting curves for all,∅, 31, 31�31 and
others are coloured with red, blue, fuchsia, black and orange, respectively.
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Figure 2. Distributions fK(r; λ, N) of intersegment distance r at λ = 1/2 for N = 600. Dots (·),
crosses (×), asterisks (∗), open squares (�) and full squares ( ) denote the plots of conditions,
all,∅, 31, 31�31 and others, respectively. The plots and fitting curves are coloured with red, blue,
fuchsia, black and orange, respectively.

δK = 1

1 − νK

. (10)

Hereafter we set d = 3.
For the distribution gK(R;N) of gyration radius R, we introduce the following formula:

gK(R;N) = Ag,K |R − cK |θg,K exp[−Dg,K |R − cK |δg,K ]. (11)

For the Gaussian random walk there are some approximate expressions for the distribution
of the gyration radius [35, 41]. (See also section 8 of [36].) For instance, the large R
case of Fixman’s result [35] corresponds to a special case of formula (11), where we set
δg,K = 2, cK = 0 and θg,K = 1.

4.2. Distribution function fK(r; λ,N) of intersegment distance r

The intersegment distributions fK(r; λ,N) at λ = 1/2 for N = 300 and 600 are presented
in figures 1 and 2, respectively. Here the topological conditions denoted by K correspond
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Table 1. The fitting values of the scaling formula (8) to the data of the distribution fK(r; λ, N) at
λ = 1/2 with χ2 values per datum.

N K γK νK DK × 102 AK × 103 χ2 Fitting range

300 all 1.04 ± 0.03 0.503 ± 0.005 1.9 ± 0.1 1.78 ± 0.09 1.13 5.75–20
∅ 0.87 ± 0.13 0.509 ± 0.019 1.7 ± 0.5 0.8 ± 0.1 1.05 6.5–16
31 0.93 ± 0.09 0.50 ± 0.01 1.9 ± 0.3 1.1 ± 0.1 0.90 6.25–19
31#31 1.0 ± 0.1 0.51 ± 0.02 2.0 ± 0.6 1.5 ± 0.3 0.85 5.75–17
others 1.1 ± 0.1 0.48 ± 0.02 2.9 ± 0.6 4.0 ± 0.5 0.81 5.5–15

600 all 1.03 ± 0.02 0.501 ± 0.004 0.99 ± 0.05 0.63 ± 0.03 0.76 7.5–30
∅ 0.8 ± 0.2 0.51 ± 0.03 0.8 ± 0.4 0.19 ± 0.07 0.78 9–23
31 0.8 ± 0.2 0.51 ± 0.02 0.9 ± 0.3 0.22 ± 0.06 1.22 8.5–23.75
31#31 1.0 ± 0.1 0.52 ± 0.02 0.7 ± 0.3 0.29 ± 0.06 0.92 7.5–22
others 1.06 ± 0.05 0.493 ± 0.008 1.2 ± 0.1 0.94 ± 0.09 0.97 8.25–28.5

to restriction of random polygons into the following sets: (i) all polygons; (ii) polygons of
the trivial knot ∅; (iii) polygons of the trefoil knot 31; (iv) polygons of the composite knot
31�31 and (v) polygons of any knot types other than the three knots ∅, 31 and 31�31. We thus
consider the five different topological conditions. We note that the case (i) corresponds to no
topological constraint. We denote the distribution functions of the five cases simply as fall, f∅,
f31 , f31�31 and fothers, respectively.

The fitting curves of figures 1 and 2 are fit well to the data points. The curves are given by
the scaling form (8), and are all very close to the Gaussian distributions. Here we note that it
is also the case with the data for λ = 1/4 and 3/4. The numerical estimates for the exponents
θK and δK and the constants AK and DK are given in table 1. The actual ranges of distance r
used for the fitting curves are also shown in table 1. The fitting curves fit very well to the data
points not only in the range of r larger than the peak position but almost in the entire range of
r. The χ2 values per datum are very small. Only very small deviations are seen in the small r
region, although the region is out of the fitting ranges.

The best estimates of the exponents θK and δK almost agree with the Gaussian values,
i.e., νK ≈ 1/2 and γK ≈ 1, within the range of estimation errors, for all the five different
topological conditions and for both N = 300 and 600. The constant DK depends on the
polygonal length N. However, it does not change very much for the different knot types with
respect to the estimation errors. The constant AK depends on the knot type K for N = 300.
However, the difference among AKs becomes smaller for N = 600 than for N = 300. It is
thus suggested that they should become the same value when N is very large.

Let us denote by r∗
K the peak position of the distribution fK(r). Assuming the scaling

form (8), the peak position r∗
K is given by

r∗
K =

(
2 + θK

DKδK

)1−νK

. (12)

The peak position r∗
K may characterize the knot dependence of the distribution function fK(r).

When νK = 0.5 and γK = 1.0, the form of fK(r) is determined by the parameter DK .
In figure 1, the peak position r∗

∅ of the distribution f∅(r) is larger than r∗
all of fall. For

fothers, r
∗
others is smaller than r∗

all. In figure 2, the peak positions of f∅, f31 and f31�31 are all
larger than that of fall for N = 600. Their values of N = 600 are much closer to each other
than in the case of N = 300. Here the peak position r∗

others of fothers is smaller than that of fall

also in the case of N = 600. It is thus suggested that when N is very large, the peak positions
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They are displayed with red, blue, fuchsia and black, respectively. Here �r of equation (4) is given
by �x = 0.02.

of fK(r) of simple knots should be given by the same value and the distributions fK(r) should
approach a universal form.

The observations in figures 1 and 2 suggest that fixing a knot type of a random polygon
leads to effective repulsion or attraction among internal segments of the polygon depending
on the complexity of the knot type. When the length N becomes very large, polygons of very
complex knots can appear. They should have smaller conformations than other polygons of
simpler knots. As we see in figure 1 for N = 300, random polygons with the trivial knot
have larger conformations on average than those of no topological constraints, while random
polygons of more complex knots have smaller conformations. This should be consistent with
the effective swelling observed in the studies on the average sizes of random polygons with
some fixed knots [20, 22–24].

Let us discuss the λ and N dependence of the distribution function fK(r, λ,N) for a knot
K. We denote by rK(λ,N) the average of the intersegment distance r at the parameter λ for
random polygons of N nodes with the knot K. We shall suggest that for a given knot K, the
distribution function fK(r, λ,N) should depend on N and λ only through the value rK(λ,N).

We introduce the distribution f̃ K of normalized intersegment distance x = r/rK . Here
we note f̃ K(x, λ,N) dx = fK(r, λ,N) dr . The data for the three knots show that the function
f̃ K does not depend on either λ or N. In figure 3, the data points of the distribution function
f̃ ∅(x; λ,N) of the normalized intersegment distance x = r/r∅ are shown for the four cases:
λ = 1/2 or 1/4 and N = 300 or 600. It is clear that the data points for all the four cases
are located on the same curve. The best estimates of the fitting parameters to the data of f̃ K

are given in tables 2 and 3 for λ = 1/2 and 1/4, respectively. As far as the five topological
conditions are concerned, each of the fitting parameters of a condition K has almost the same
value for N = 300 or 600 and for λ = 1/2 or 1/4. Thus, we suggest that for a given knot K
the distribution of the normalized intersegment distance, f̃ K(x, λ,N), should be given by the
same Gaussian form for any N and λ.

We now show that the λ and N dependence of the average distance rK(λ,N) is given by
the Gaussian one in the cases of λ = 1/4, 1/2 and 3/4 for the three knots. Let us denote by
P(r;N) the end-to-end distance distribution of the Gaussian random walk of N steps. For
random polygons consisting of two Gaussian chains of λN steps and (1 − λ)N steps, the
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Table 2. The fitting values of the scaling formula (8) to the data of the re-scaled distribution
f̃ K (x; λ, N) at λ = 1/2 with χ2 values per datum.

N K γK νK DK AK × 102 χ2 Fitting range

300 all 1.04 ± 0.04 0.504 ± 0.006 1.25 ± 0.04 6.3 ± 0.2 0.80 0.70–2.00
∅ 0.89 ± 0.08 0.51 ± 0.01 1.39 ± 0.08 7.7 ± 0.6 1.20 0.70–2.00
31 0.99 ± 0.08 0.52 ± 0.01 1.30 ± 0.08 6.9 ± 0.5 0.89 0.70–2.00
31#31 1.1 ± 0.1 0.52 ± 0.02 1.2 ± 0.1 6.4 ± 0.8 0.90 0.70–2.00
others 1.04 ± 0.07 0.49 ± 0.01 1.26 ± 0.07 6.2 ± 0.4 0.91 0.70–2.00

600 all 1.03 ± 0.04 0.502 ± 0.006 1.26 ± 0.04 6.4 ± 0.2 0.75 0.70–2.00
∅ 1.0 ± 0.1 0.53 ± 0.02 1.3 ± 0.1 7.2 ± 0.8 0.81 0.70–2.00
31 0.9 ± 0.1 0.51 ± 0.02 1.4 ± 0.1 7.8 ± 1.0 1.26 0.70–2.00
31#31 1.0 ± 0.1 0.52 ± 0.02 1.3 ± 0.1 7.2 ± 1.0 1.05 0.70–2.00
others 1.06 ± 0.05 0.499 ± 0.008 1.24 ± 0.05 6.2 ± 0.3 1.00 0.70–2.00

Table 3. The fitting values of the scaling formula (8) to the data of the re-scaled distribution
f̃ K (x; λ, N) at λ = 1/4 with χ2 values per datum.

N K γK νK DK AK × 102 χ2 Fitting range

300 all 1.10 ± 0.04 0.514 ± 0.006 1.19 ± 0.04 6.0 ± 0.2 0.88 0.70–2.00
∅ 1.01 ± 0.09 0.52 ± 0.01 1.28 ± 0.08 6.8 ± 0.6 1.54 0.70–2.00
31 1.15 ± 0.07 0.54 ± 0.01 1.14 ± 0.07 5.9 ± 0.4 0.94 0.70–2.00
31#31 1.0 ± 0.2 0.51 ± 0.02 1.3 ± 0.2 6.8 ± 1.0 1.06 0.70–2.00
others 1.11 ± 0.07 0.50 ± 0.01 1.20 ± 0.07 5.8 ± 0.4 1.03 0.70–2.00

600 all 1.05 ± 0.05 0.507 ± 0.007 1.24 ± 0.05 6.2 ± 0.3 1.28 0.70–2.00
∅ 1.0 ± 0.1 0.53 ± 0.02 1.3 ± 0.1 7.0 ± 0.7 0.78 0.70–2.00
31 0.8 ± 0.1 0.50 ± 0.02 1.4 ± 0.1 8.1 ± 1.1 1.24 0.70–2.00
31#31 0.9 ± 0.2 0.51 ± 0.02 1.4 ± 0.1 7.5 ± 1.1 1.18 0.70–2.00
others 1.13 ± 0.05 0.511 ± 0.008 1.17 ± 0.05 5.8 ± 0.3 1.07 0.70–2.00

probability distribution of the vector r connecting the two end-points should be proportional
to the product P(r; λN)P (r; (1 − λ)N). Here we note that the intersegment vector r for
the parameter λ connects the common end-points of the two random walks of length λN and
(1 − λ)N . For the case of no topological constraint, therefore, the constant Dall is given by

Dall = 3

2λ(1 − λ)Na2
. (13)

Here a denotes the bond length, and a = 1 in this paper. We thus have

rall(λ,N) =
√

8

3π

√
λ(1 − λ)Na. (14)

The ratio rK(λ,N)/rall(λ,N) is plotted in figure 4 for N = 300 and 600 with respect to the
topological conditions, ∅, 31, 31�31 and others. In each case of the four topological conditions,
the ratio takes almost the same value for λ = 1/2, 1/4 and 3/4. Furthermore, we find that
the ratio should also coincide with the ratio of the gyration radii, RK/Rall. Thus, we have the
conjecture: rK(λ,N) = rall(λ,N)RK/Rall. If the conjecture is true, then the λ dependence of
the distribution fK(r, λ,N) is completely given by the Gaussian one, and the N dependence
is given by the Gaussian with the re-scaling factor RK/Rall. Here we remark that the ratio
RK/Rall may depend on the number of nodes N, since random polygons under a topological
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denoted by dots (·), crosses (×) and asterisks (∗), respectively. Here K is given by ∅, 31, 31�31
and others (oth). The ratio 〈RK 〉/〈Rall〉 is denoted by open squares (�) for the four cases of K.
Here we consider N = 300 and 600. Dots, crosses, asterisks and squares are coloured with red,
blue, fuchsia and black, respectively.

constraint can be larger or smaller than that of no topological constraint due to entropic
repulsion induced by the topological constraint.

We explain some details about the average size of random polygons. We first recall that
the symbol RK denotes the square root of the mean square radius of gyration for random
polygons of a topological constraint K. We denote by 〈RK〉 the mean gyration radius of a
polygon averaged over an ensemble of random polygons of a topological constraint K. In
figure 4, the ratio 〈RK〉/〈Rall〉 is plotted for the four topological conditions. However, the
difference between the two ratios, RK/Rall and 〈RK〉/〈Rall〉, should be smaller than the error
bars.

Let us discuss the knot dependence of the distribution fK . We show that the distribution
f̃ K of the normalized distance x for a knot K should be almost independent of the knot type.
In figure 5, the re-scaled distribution f̃ K for the five topological conditions are plotted against
the normalized intersegment distance x = r/rK for the case of N = 300 and λ = 1/2. We
see in figure 5 that the distributions f̃ K should almost the same for the three knots. It is
consistent with the observation that the estimates of the parameters are of similar values for
the five topological conditions, as shown in tables 2 and 3. Thus, the knot dependence of the
distribution fK should be renormalized into the value rK(λ,N).

4.3. Distribution gK(R;N) of gyration radius R

The distribution functions gK(R;N) of gyration radius R are shown in figures 6 and 7 with
respect to the five topological conditions for N = 300 and 600, respectively. Here the five
cases are the same as in section 4.2. We denote the distributions gK for the five cases briefly
as gall, g∅, g31 , g31�31 and gothers, respectively. The fitting curves in figures 6 and 7 fit well to
the data points in some ranges of R. The curves are given by formula (11). Thus, formula (11)
approximates the distribution gK(R;N) of gyration radius effectively. They could be useful
for studying topological effects on the gyration radius.

Let us consider plotting the distribution gK with respect to a normalized variable of the
gyration radius, R/RK . More precisely, we consider plotting gK in terms of the variable
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R/〈RK〉. Here we recall that 〈RK〉 denotes the average of the gyration radius of a polygon
averaged over an ensemble of random polygons with a given knot K. We introduce distribution
g̃K(y;N) of the variable y = R/〈RK〉 by the relation: g̃K(y;N) dy = gK(R;N) dR.
Hereafter, however, we denote 〈RK〉 simply by RK , except for figure captions.

We now present the re-scaled distribution g̃K in figures 8 and 9 for N = 300 and N = 600,
respectively. We find that for a given knot K the distribution g̃K of normalized gyration radius
y = R/RK should be independent of the knot type almost completely. In figures 8 and 9, the
data points and their fitting curves of g̃K overlap each other for the cases of the three knots,
∅, 31 and 31�31. We also find that the fitting curves fit well to the data points both in figures 8
and 9. They are drawn by a fitting formula corresponding to (11)

g̃K(y;N) = Ãg,K |y − c̃K |θg,K exp[−D̃g,K |y − c̃K |δg,K ]. (15)
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The fitting parameters Ãg,K, D̃g,K and c̃K correspond to Ag,K,Dg,K and cK of formula (11)
as

Ag,K = Ãg,K

/
R

1+θg,K

K , Dg,K = D̃g,K

/
R

δg,K

K , cK = c̃KRK. (16)

The best estimates of the fitting parameters are listed in table 4. The χ2 values are good,
in particular, for the cases of the three knots, g̃∅, g̃31 and g̃31�31 . Here the fitting range of
y = R/RK is given by 0.4–2.0 for all the fitting parameters given in table 4.

The knot dependence and the N dependence of distribution gK should be renormalized
into the mean square radius of gyration, R2

K(N). The re-scaled distributions g̃K for the three
knots do not depend on the polygonal length, N. The fitting curves of g̃K for the three knots
are almost the same for N = 300 and N = 600. We can confirm the observation in figures 8
and 9 by comparing the estimates shown in table 4. The fitting parameters θg,K , δg,K, Ãg,K

and c̃K depend on neither the knot type K nor the polygonal length N with respect to their
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Table 4. The fitting values of formula (15) to the data of the re-scaled distribution g̃K (y; N) of the
normalized gyration radius y = R/〈RK 〉 for N-noded random polygons of topological condition
K with χ2 values per datum. The fitting range of y is from 0.4 to 2.0.

N K θg,K δg,K D̃g,K Ãg,K × 10−4 c̃K χ2

300 all 6.2 ± 0.3 1.44 ± 0.03 11.0 ± 0.4 0.019 ± 0.009 0.423 ± 0.007 3.63
∅ 7.9 ± 0.4 1.31 ± 0.03 14.6 ± 0.6 0.4 ± 0.3 0.441 ± 0.006 1.61
31 8.3 ± 0.3 1.21 ± 0.03 16.1 ± 0.6 1.7 ± 1.1 0.450 ± 0.004 3.33
31#31 8.7 ± 0.5 1.13 ± 0.03 17.3 ± 0.8 6 ± 5 0.457 ± 0.005 1.16
others 7.7 ± 0.3 1.12 ± 0.03 15.1 ± 0.6 1.1 ± 0.6 0.441 ± 0.004 3.97

600 all 6.2 ± 0.3 1.42 ± 0.02 11.0 ± 0.3 0.020 ± 0.007 0.424 ± 0.006 5.91
∅ 7.7 ± 0.3 1.30 ± 0.03 14.9 ± 0.4 0.46 ± 0.23 0.457 ± 0.005 1.86
31 8.3 ± 0.3 1.21 ± 0.03 16.3 ± 0.5 1.9 ± 1.1 0.458 ± 0.004 2.39
31#31 8.1 ± 0.3 1.22 ± 0.03 16.0 ± 0.5 1.3 ± 0.6 0.463 ± 0.003 2.38
others 7.0 ± 0.3 1.25 ± 0.03 13.1 ± 0.5 0.14 ± 0.08 0.434 ± 0.006 6.90

errors. The normalization of gyration radius, R/RK , should be thus essential when analysing
the distribution function gK .

Random polygons of relatively simple knots should be larger in size than the average one,
while those of more complex knots should be smaller. It depends on the polygonal length
N whether the size of random polygons of a given knot should be larger or smaller than the
average. In figure 6, the peak position of the distribution g∅ is larger than those of the other
distributions gall, g31 , g31�31 and gothers. In figure 7, the peaks of g∅, g31 , g31�31 are clearly
located on the right-hand side of the peak of gall, while the peak of gothers is located on the
left-hand side. The equilibrium length of a random knot can be a criterion whether it is larger
or smaller than the average [42]. We also note that the peak positions of distributions gK

shown in figures 6 and 7 are roughly consistent with the average values of RK [20, 22–24].

5. Discussion

We have found that the distribution fK of intersegment distance for random polygons under
topological constraint K is almost given by the Gaussian distribution. Furthermore, re-scaling
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the distance by the average distance rK , we have shown that the λ and N dependence of
fK is renormalized into the average distance rK(λ,N). We have proposed the conjecture:
rK = rallRK/Rall, for any λ,N and K. Here we have assumed that N is large enough. If it is
true, then topological constraints do not have any effect on the distribution of intersegment
distance, fK , except for scaling the distance by the factor RK/Rall.

The effect of the ‘topological excluded volume’ should be rather different from the
standard excluded volume effect of self-avoiding walks. It does not correspond to a real
excluded volume, although the ratio RK/Rall of a knot K can become larger than 1 in the case
of large N. When N increases, random polygons with more complex knots can appear, which
should be smaller than those of a simple knot. If we consider only such random polygons
that have a fixed simple knot, then the size can be larger than the average one when N is
very large. Topological constraints thus may induce effective swelling of random polygons.
However, they do not change the functional form of the distribution of the distance between
two segments.

Let us discuss the difference in terms of critical exponents. We denote by ν ′
K the scaling

exponent defined for the asymptotic behaviour of the average size of SAW such as given in
(1). For SAW, the exponent ν ′

K corresponds to the exponent νK determined by formula (8) [1].
If des Cloizeaux’s relations (9) and (10) could be valid for random polygons under topological
constraints, we should have ν ′

K 
 0.50 from the best estimates for the distribution fK(r; λ,N)

as shown in table 1.
Within the scope of this research, however, it is not clear whether two exponents νK and

ν ′
K should be equal or not. Moreover, it is not clear whether relations (9) and (10) should

be valid for random polygons under topological constraints. It seems that the form of the
distribution fK(r; λ,N) remains Gaussian with the exponent νK 
 0.50 in the limit N → ∞.
However, the average size R2

K(N) might follow the scaling form with a different exponent,
ν ′

K > 0.5.
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